In situ electrical modulation and monitoring of nanoporous gold morphology.
نویسندگان
چکیده
The ability to fine-tune feature size in nanostructured thin films is critical, as many desirable properties of these materials are dictated by their nanostructure. Accordingly, there is a need for techniques that allow for modifying nanostructure while monitoring the morphological changes in situ. Here, we demonstrate a closed-loop electro-annealing system which enables in situ monitoring of morphology evolution in sub-micron nanoporous gold (np-Au) thin films. Np-Au is produced by a microfabrication-compatible self-assembly process that produces a network of interconnected ligaments with tunable diameter (10 s to 100 s of nanometers), making it a desirable material for numerous applications and fundamental studies alike. We specifically investigate the relationship between np-Au morphology (i.e., ligament diameter) and electrical resistance of the thin film. A strong correlation emerges between ligament size and electrical resistance, which puts forward resistance as an effective parameter for monitoring morphology evolution. Surprisingly, np-Au films with thicker ligaments lead to an increase in electrical resistance, which is unexpected since the extent of charge carrier scattering at the ligament surface should decrease with increasing ligament size. Further examination of np-Au morphology with high-resolution electron microscopy revealed grain growth on the ligaments in highly-annealed np-Au thin films. This suggests that grains act as scattering centers for charge carriers and this becomes the dominant mechanism in dictating electrical resistance in a percolated network of thin conductive ligaments.
منابع مشابه
The fabrication of low-impedance nanoporous gold multiple-electrode arrays for neural electrophysiology studies.
Neural electrodes are essential tools for the study of the nervous system and related diseases. Low electrode impedance is a figure of merit for sensitive detection of neural electrical activity and numerous studies have aimed to reduce impedance. Unfortunately, most of these efforts have been tethered by a combination of poor functional coating adhesion, complicated fabrication techniques, and...
متن کاملMorphological control and plasmonic tuning of nanoporous gold disks by surface modifications
We report a surface modification protocol to control nanoporous gold (NPG) disk morphology and tune its plasmonic resonance. Enlarged pore size up to !20 nm within 60 s dealloying time has been achieved by adsorbing halides onto alloy surfaces in-between two dealloying steps. In addition, plasmonic resonance has been significantly red-shifted by up to !258 nm by the surface modification. Furthe...
متن کاملNanostructural Engineering of Nanoporous Anodic Alumina for Biosensing Applications
Modifying the diameter of the pores in nanoporous anodic alumina opens new possibilities in the application of this material. In this work, we review the different nanoengineering methods by classifying them into two kinds: in situ and ex situ. Ex situ methods imply the interruption of the anodization process and the addition of intermediate steps, while in situ methods aim at realizing the in-...
متن کاملSynthesis of gold nanoparticles: a new approach in using a nanoporous membrane in conjunction with ultrasonication
Gold nanoparticles were synthesized by chemical reduction of HAuCl4 inside the pores of a polycarbonate-based membrane followed by dissolving the membrane in dichloromethane and further sonication. Sonication time as the main affecting factor on the nanoparticle size was investigated. The characterization by transmission electron microscopy showed the formation of gold nanoparticles with diamet...
متن کاملSynthesis of gold nanoparticles: a new approach in using a nanoporous membrane in conjunction with ultrasonication
Gold nanoparticles were synthesized by chemical reduction of HAuCl4 inside the pores of a polycarbonate-based membrane followed by dissolving the membrane in dichloromethane and further sonication. Sonication time as the main affecting factor on the nanoparticle size was investigated. The characterization by transmission electron microscopy showed the formation of gold nanoparticles with diamet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 8 47 شماره
صفحات -
تاریخ انتشار 2016